
A Simple and E�cient P

IEEE Intl. Conf. on Robotics and Automation, 1995, pp. 2553{2560

rocedure for Polyhedral

Assembly Partitioning under In�nitesimal Motions�

Leonidas J. Guibasy Dan Halperiny Hirohisa Hirukawaz Jean-Claude Latombey

Randall H. Wilsonx

Abstract

We study the following problem: Given a collection
A of polyhedral parts in 3D, determine whether there
exists a subset S of the parts that can be moved as
a rigid body by an in�nitesimal translation and ro-
tation, without colliding with the rest of the parts,
A nS. A negative result implies that the object whose
constituent parts are the collection A cannot be taken
apart with two hands. A positive result, together with
the list of movable parts in S and a direction of mo-
tion for S, can be used by an assembly sequence plan-
ner. This problem has attracted considerable attention
within and outside the robotics community. We devise
an e�cient algorithm to solve this problem. Our solu-
tion is based on the ability to focus on selected portions
of the tangent space of rigid motions and e�ciently ac-
cess these portions. The algorithm is complete (in the
sense that it is guaranteed to �nd a solution if one ex-
ists), simple, and improves signi�cantly over the best
previously known solutions. We report experimental
results with an implementation of our algorithm.

1 Introduction

In this paper we study an instance of the assembly
partitioning problem [16]: Given a collection A of non-
overlapping polyhedral parts, does there exist an in-

�Work on this paper by L.J. Guibas, D. Halperin and J.-
C. Latombe has been supported by NSF/ARPA Grant IRI-
9306544, and by a grant from the Stanford IntegratedManufac-
turing Association (SIMA). Work on this paper by L.J. Guibas
and D. Halperin has been also supported by NSF Grant CCR-
9215219. Work on this paper by R.H. Wilson has been sup-
ported by Sandia National Laboratories, Laboratory Directed
Research and Development Program, under DOE contract DE-
AC04-94AL85000.

yRobotics Laboratory, Department of Computer Science,
Stanford University, Stanford, CA 94305.

zElectrotechnical Laboratory, Agency of Industrial Science
and Technology, Ministry of International Trade and Industry,
1-1-4 Umezono, Tsukuba 305 JAPAN.

xIntelligent Systems and Robotics Center, Sandia National
Laboratories, Albuquerque, NM 87185.

�nitesimal motion (translation and rotation) that can
be applied to a subset S of the parts in A, that will
move S as a rigid body without colliding with the rest
of the parts, A n S? A product is two-handed if it
can be assembled by a sequence of operations each of
which merges two rigid subassemblies of the product.
A negative answer to the above question, means that
A is not two-handed. It may be the case that A can
be assembled by more than two hands, but then the
assembly process usually becomes more costly, and in-
deed most industrial products are two-handed. It may
also be the case that A cannot be assembled.

A positive answer to the question, together with a
list of the parts in S and a direction of motion for S,
can be used in an assembly sequence planner. It does
not provide a complete speci�cation for an assembly
step, but it points out a plausible direction of motion.
Since in each assembly step we wish to merge two sub-
assemblies from a state in which they are separated, we
must produce the speci�cation of an extended motion
and thus there is still more checking to be done in or-
der to produce such a motion, if one exists. In spite of
this shortcoming, in�nitesimal motions are attractive
in assembly planning because their analysis translates
to handling linear constraints, even when allowing ro-
tation (see, e.g., [5],[9],[17]). Fore more information on
assembly planning see, e.g., [6],[16],[18].

In 1988, in his paper \On Planning Assemblies" [12],
Natarajan conjectured that \two hands su�ce to as-
semble any composite comprised of convex polyhedra
in 3-space". In a surprising result, Snoeyink and Stol�
[14] have recently been able to disprove this conjec-
ture: They gave an example consisting of thirty convex
polyhedral parts that cannot be taken apart with two
hands. The proof of the validity of the construction re-
lies on a computer program that (up to symmetries in
their construction) exhaustively tries every subset of
the collection of parts against the rest of the parts for
in�nitesimal separation (that is, by showing that there
is no possible in�nitesimal translation and rotation for
any division of the parts). Thus their algorithm for



checking in�nitesimal separability is exponential in the
number of parts. This is typical of several existing as-
sembly planning techniques that rely on a \generate-
and-test" approach; see, e.g., [7]. We remark that the
work by Snoeyink and Stol� continues a long line of
research, whose objective was to construct composites
that are interlocked under various types of motions
(see, e.g., [3], [4], [12]).

An e�cient procedure for the in�nitesimal parti-
tioning problem was proposed by Wilson and Mat-
sui [17] who devised a polynomial-time algorithm to
solve this problem. Their solution is based on the non-
directional blocking graph (NDBG) concept [15]. See
Section 2 below.

In this paper we take a similar approach to that of
Wilson and Matsui, but we derive a considerably more
e�cient algorithm. Our approach is based on the abil-
ity to e�ciently access portions of the tangent space
that are relevant to our problem. We call these por-
tions maximally covered cells. Our procedure �nds a
representative point inside each such cell. We show,
that those representative points are su�cient to cover
all the potential families of feasible motions, thus mak-
ing our algorithm complete, namely, if there exists a
solution our algorithm will �nd it.

Our method is not restricted in dimension and it can
be applied to various problems involving any number
of degrees of freedom. It does, however, rely on the fact
that the number of degrees of freedom is not too big.
For in�nitesimal rigid motions in three-dimensional
space this number is �ve. We believe that our tech-
nique can be useful in other areas as well. In Section 6
we support this claim by showing how it can be used
in model-based object recognition.

We have implemented the algorithm and we present
experimental results together with several practical
considerations.

The rest of the paper is organized as follows. In Sec-
tion 2 we supply more background which is needed to
explain our algorithm. In Section 3 we expose the ideas
underlying our new approach. These are then used in
the algorithm which we present in Section 4, where we
also analyze its running time. In Section 5 we present
experimental results produced by the implementation
of the algorithm. In Section 6 we briey review the ap-
plication of the approach to model-based object recog-
nition. Some concluding remarks and open problems
are given in Section 7.

2 Background

The starting point of our new approach is similar to
that of Wilson and Matsui [17]. In this section we

briey review some of the ingredients of their analysis
that are needed here as well. We refer the reader to
their paper [17] for more details.

The non-directional blocking graph (NDBG, for
short) is a subdivision of the space of all allowable
motions of separation into a �nite number of cells such
that inside any single cell the blocking relation between
all pairs of parts is �xed. These blocking relations for
a �xed motion (and hence for a cell in the subdivi-
sion) are gathered in a directed graph, the directional
blocking graph (DBG), whose nodes v1; v2; : : : ; vn rep-
resent the n parts P1; P2; : : : ; Pn in the assembly, and
a directed arc from node vi to node vj means that the
part Pi will collide with the part Pj if this motion is
applied to Pi. A partitioning of the full assembly A

into two subassemblies under a speci�c motion is pos-
sible, if and only if, the DBG for that motion is not
strongly connected. For more details on the NDBG
concept, see [15],[16].

Contacts between polyhedra consist of points, line
segments, and planar polygonal contacts. The in-
�nitesimal motion constraints arising from line seg-
ments and planar polygonal contacts can be reduced to
equivalent �nite sets of point-plane contact constraint.
For example, the contact between a convex edge e of
one polyhedron and a face f of another polyhedron is
equivalent to two point-plane constraints, one at each
end of the intersection segment of e and f . (For more
details, see [5],[13],[17].) We therefore concentrate on
point-plane contact constraints.

An in�nitesimal motion �X of a polyhedron Pi can
be described as a vector with three parameters for
translation and three for rotation:

�X = (�x;�y;�z;
x;
y;
z) ;

where 
x;
y; and 
z are the rotational components
of �X around the x; y; and z axes, respectively. Now,
consider the point-plane contact c between the vertex
vc of a polyhedron Pi and the face of a polyhedron
Pj with outward normal nc. The in�nitesimal motion
�X causes the vertex vc of Pi to undergo a translation
Jc�X, where Jc is the 3 � 6 Jacobian matrix that
relates the di�erential motion of Pi to the motion of
vc.

An in�nitesimalmotion�X such that nTc Jc�X < 0
will cause the part Pi to penetrate into Pj at the con-
tact point vc. Therefore this point-plane contact will
allow only local motions �X such that nTc Jc�X � 0,
and when this inequality holds we say that �X obeys
the contact c. Equality (i.e., when nTc Jc�X = 0)
means that the in�nitesimal motion causes a sliding
of one polyhedron relative to the other at the con-
tact. The set of in�nitesimal motions allowed by all

2



the point-plane constraints involving one polyhedron
Pi is the intersection of the motions that obey each
constraint individually.

Since two motions �X1 and �X2, with �X1 =
s � �X2 for a positive scalar s di�er only in veloc-
ity, we restrict ourselves to motions �X such that
j�Xj = 1. Hence our motions are all represented by
points on the unit sphere S5 in six-dimensional space.
Each point-plane contact de�nes a hyperplane that di-
vides S5 in half, and determines a closed hemisphere
(whose boundary is a great circle on S5) of in�nitesi-
mal motions that obey that speci�c contact.

For convenience, we choose a hyperplane � tangent
to S5 and centrally project the great circles introduced
by the constraints on S5, onto that hyperplane. Now
our constraints are transformed into closed halfspaces
in R5. This way we have only projected a hemisphere
of S5 onto the special hyperplane �. However, it is eas-
ily veri�ed that with a little caution we do not lose any
information by this transformation. Let �0 be the hy-
perplane parallel to � and passing through the origin.
We choose � such that �0 does not cross vertices on
S5 (i.e., points where 5 constraint hyperplanes or more
meet), and then the projected hemisphere contains all
the information necessary to �nd a partitioning if one
exists, because the other hemisphere has a symmetric
subdivision on it. In other words, if a point p on the
sphere represents a motion that will separate S from
A n S, then the antipodal point of p will represent the
separation of the same two subassemblies in precisely
the opposite direction.

3 Maximally Covered Cells

Our novel and more e�cient approach is based on sev-
eral observations that we explain in this section.

First, we group the contact constraints for each or-
dered pair of parts (Pi; Pj). We denote the collection
of closed halfspaces that represent constraints on the
motion of Pi relative to Pj by Qij. It follows from the
discussion in the previous section, that the intersec-
tion of all the constraints in Qij is the convex polytope
representing the motion directions in which Pi will not
collide into Pj. With a slight abuse of notation we will
refer to Qij both as a collection of closed halfspaces
and as the convex polytope that is the intersection of
these halfspaces.

Next, we consider the subdivision of 5-space induced
by all the constraints Qij for all the ordered pairs of
parts in our assembly. It is evident that inside each
cell of any dimension in this subdivision, the blocking
relation, and hence the blocking graph (the DBG, see
Section 2) is �xed. The crux of our new technique is

the observation that we need to consider only some of
the cells in this subdivision and that there is a way
to access these cells directly without computing the
entire subdivision.

Since our approach seems to be applicable in other
settings as well, we describe it more generally from this
point. Let Q denote the collection of K polytopes in
d-dimensional space (in our application, these are the
at most n(n�1) polytopes Qij in 5-dimensional space,
where n is the number of parts in the assembly). Let
A(Q) denote the subdivision of d-space induced by this
collection, namely the collection of relatively open cells
of dimensions 0; 1; : : : ; d induced by the boundaries of
all the polytopes in Q. For example, a d-dimensional
cell in the subdivision is a maximal portion of d-space
not meeting any boundary of any polytope in Q. Let
N be the total number of facets in all the polytopes
together, i.e., N is the overall number of constraint
halfspaces.

De�nition 3.1 The covering set of a point p in Rd

is the subset of polytopes in Q that contain p.

We now turn to discuss maximally covered cells. In-
formally, a cell is maximally covered, if there is no way
to augment its covering set just by crossing its bound-
ary, or in other words:

A cell is maximally covered if every point out-
side the cell and in�nitesimally close to the
cell is covered by only a subset of the poly-
topes that cover the cell.

Since we deal with closed polytopes it is equivalent to
require that any point on the relative boundary of the
cell will have the same covering set as its interior. Since
a maximally covered cell and its relative boundary
have the same covering set, dealing with both the cell
and each of its bounding faces is redundant. Hence, we
require that the closure of a maximally covered cell is
a maximal connected region of d-space with that cov-
ering set. We summarize the above discussion in the
following

De�nition 3.2 A cell C in the subdivision A(Q) is
called a maximally covered cell if the covering set
of any point on the relative boundary of C is the same
as the covering set of its interior, and the closure of
C is a maximal connected region of d-space with that
covering set.

To get a feeling for what this de�nition says, consider
Figure 1, which depicts a collection of convex polygons
in the plane. There are four maximally covered cells
in the subdivision de�ned by the six polygons in the

3



Figure 1: Maximally covered cells in a planar subdivi-
sion

�gure. Three of the maximally covered cells are two-
dimensional cells and they are shaded in the �gure: the
shaded hexagon is covered by one polygon and every
point outside the hexagon and in its immediate neigh-
borhood is not covered by any polygon. The shaded
triangle is covered by two polygons, and the shaded
pentagon is covered by three polygons. There is also
one maximally covered cell that is one-dimensional.
This is the segment of intersection between two poly-
gon boundaries pointed to by the arrow. Every point
along this intersection segment is covered by the two
polygons (recall that we deal with closed polytopes)
and every point in the neighborhood of this segment
but not lying on it is either covered by a single polygon
or by none.

Back to the original problem, we argue that if there
is a solution (S; p) to our partitioning problem, namely
there is a subset S of the parts in A, and a direction
p of motion that will separate it in�nitesimally from
the rest of the parts, then there is a solution (S; p0)
such that p0 is a point inside a maximally covered cell.
To see why this claim is true, consider a partitioning
(S; p) such that p is not inside a maximally covered
cell. But then there is a point q on the boundary of
the cell containing p that is covered by more polytopes
than its interior. Since we deal with closed polytopes,
by moving to the boundary of a cell C we cannot get
out of any polytope covering the interior of C. We
move to the point q on the boundary, and move further
in�nitesimally across that boundary into the highest-
dimensional cell we can get to without crossing another
constraint boundary, and denote the new point by p0.
We claim that (S; p0) is still a valid partitioning: this is
evident because we only removed a blocking constraint
when we have moved to p0. If the cell containing p0 is
maximally covered, then we are done, otherwise we

continue as above. This process is �nite, and we are
guaranteed to stop inside a maximally covered cell.

What do we gain from the above observation? We
show next that the number of maximally covered cells
is potentially smaller than the overall number of cells
in the entire subdivision.

Theorem 3.3 The maximum number of maximally
covered cells in A(Q) is O(Kd).

Proof: We choose a directionD inRd such that every
bounded maximally covered cell has a minimumpoint
in direction D. (The unbounded cells of the subdivi-
sion can be easily shown to include only a negligible
number of maximally covered cells.) This minimum
point is a vertex v of the subdivision where at least
d facets of polytopes in Q meet. There may be more
than d facets meeting at this point in which case we
choose exactly d facets lying in d distinct hyperplanes
and we denote by Q0 the set of up to d polytopes that
contain these facets on their boundary. The point v is
clearly the minimumpoint in the D direction in the in-
tersection of the polytopes in Q0, and this intersection
is a unique convex polytope. Hence we can charge the
maximally covered cell to this intersection polytope.
There are at most

�
K

d

�
such intersection polytopes, and

the bound follows. 2

For in�nitesimal separation, Wilson and Matsui
consider the entire subdivision induced by the hyper-
planes supporting the facets of polytopes in Q, there-
fore they consider �(N5) cells. The overall number of
cells in the subdivision A(Q) is �(N2K3) in the worst
case [1]. The number of cells that our algorithm exam-
ines is �(K5). Note that K is never bigger than N ;
in practical situations K is often much smaller than
N . In the next section we show how we directly access
these cells without computing the entire subdivision.

4 The Algorithm

4.1 Finding representative points

The idea behind the algorithm is the same as in the
proof of Theorem 3.3, namely, the minimal vertex of
any maximally covered cell in a �xed direction D is a
minimal vertex in direction D of the convex polytope
which is the result of intersecting at most d polytopes
in the given collection Q.

We choose the positive direction along the coordi-
nateXd as the �xed direction. Our algorithm therefore
looks for the Xd minimal vertex of the intersection of
any set of up to d polytopes inQ. Fortunately, since we

4



are only interested in a single representative point, we
do not have to compute the intersection of the poly-
topes. Instead, we use linear programming (LP, for
short), where the constraints are the halfspaces deter-
mining the polytopes, and the objective function we
wish to minimize is Xd.

4.2 Overall algorithm

Recall that the set of points that the above algorithm
produces contains all candidate representative direc-
tions. We still need to check for each point if it actu-
ally represents a feasible direction of collision-free in-
�nitesimal motion. We do this by constructing the di-
rectional blocking graph (DBG) at each direction and
checking it for strong connectivity.

Since we do not construct the entire subdivision of
the space of possible motion directions, we cannot use
adjacency relations between cells of the subdivision to
incrementally update the DBG as we move from one
cell to another, as in [17]. Rather, we construct the
DBG from scratch at each point. To do that we build,
for every polytope in our collection, a data structure
that will enable us to e�ciently determine whether a
point is contained in the polytope or not. If a given
point g is not contained in a given polytope Qij this
means that we have to put an arc directed from the
node vi to the node vj (corresponding to the parts Pi
and Pj respectively) in the blocking graph. Otherwise,
there is no arc between the two nodes.

To summarize, here is a sketch of the algorithm for
the partitioning problem with in�nitesimal motions
where the space of directions has dimension d. The
input is a set of K constraint sets Qij for each pair
of ordered parts (Pi; Pj) in contact, and the output
is a subset of parts and a direction to move it, if one
exists, or INTERLOCKED otherwise. In the variable
H we collect all the constraints de�ning a given subset
R of the polytopes of one subproblem. The variable
e will contain the answer point from the LP program
or NULL if there is no feasible solution. The function
DBG(e) returns the DBG at the point e. The proce-
dure LP (H;Xd #) runs an LP for the constraints H
and the objective function Xd.

1. for i = 1; � � � ; d

2. for each subset R of input polytopes;

such that j R j= i

3. H  
S
r2R(Halfspaces in r)

4. e LP (H;Xd #)

5. If e = NULL goto 2; else

6. If DBG(e) is not strongly connected

7. Output e and movable subassembly

8. exit

9. Report \INTERLOCKED00

A preliminary step, omitted in the algorithm de-
scription above, derives the point-plane contacts that
are used to de�ne the input hyperplane constraints.
For that purpose, we use the algorithm devised by
Hirukawa et al. [5]; see there for details.

Note that the algorithmmay produce points in cells
that are not maximally covered. Also, the set of can-
didate points produced may change if we choose a dif-
ferent direction D along which we look for minimal
vertices. However, the algorithm is guaranteed to pro-
duce a point inside each maximally covered cell.

4.3 Complexity analysis

The main loop of our algorithm performs O(Kd) it-
erations, and in each iteration the major steps per-
formed are: (i) solving a linear programming problem,
(ii) computing a DBG, and (iii) checking the DBG
for strong connectivity. In this subsection we analyze
the worst-case running time of the algorithm using the
best known procedures for each step. Our implemen-
tation, with which the experimental results reported
below were obtained, uses di�erent procedures to im-
plement steps (i) and (ii), for reasons of software avail-
ability and simplicity.

Lemma 4.1 Solving all the linear programs together
takes time O(Kd�1N ).

Proof: We have to solve O(Kd) linear programming
problems. Recall that we assume that the dimension d
is a small constant. We will focus on the problems that
arise when we take all possible combinations of exactly
d polytopes; this will dominate the running time of
solving all the other LP problems. We use Megiddo's
algorithm that runs in time linear in the number of
constraints [8]. Thus asymptotically the overall run-
ning time of all the LP problems equals the overall
number of constraints given to all these problems. Let
us �x one constraint h, belonging to one polytope T
(i.e., to one set of constraints). It is easily veri�ed that
this constraint will participate in O(Kd�1) LP prob-
lems, which is all the possibilities to choose the other
d � 1 polytopes that are not T . Since there are N

constraints in all the polytopes together, the bound
follows. 2

5



Computing the DBG can be reduced to a collec-
tion of polytope membership queries. For one poly-
tope with m facets in dimension d, the preprocessing
takes O(mb d

2
c+�) expected time, and allows for query

time O(logm) [10]. Let mi be the number of facets
of the ith polytope in the given collection. The total
preprocessing time is

KX

i=1

O(m
b d
2
c+�

i ) = O(N b d
2
c+�) ;

and the overall query time is

O(Kd)
KX

i=1

O(logmi) = O(Kd+1 logN ) :

The time to check for strong connectivity is linear in
the number of nodes and arcs in the DBG and hence
it is dominated by its construction time.

We summarize

Theorem 4.2 The partitioning of a polyhedral assem-
bly under in�nitesimal motion, where any direction of
motion is de�ned by d parameters, can be computed
in O(Kd�1N + Kd+1 logN ) time after preprocessing

in O(N b d
2
c+�) expected time, where K is the number

of ordered pairs of polyhedral parts in contact in the
assembly (thus K is at most n(n� 1) for an assembly
with n parts), and N is the total number of the contact
constraints among the parts.

Rephrased in our original setting, namely for parti-
tioning under in�nitesimal rigid motions we have

Theorem 4.20 The partitioning of a polyhedral assem-
bly under in�nitesimal rigid motion (translation and
rotation), can be computed in O(K4N+K6 logN ) time
after preprocessing in O(N2+�) expected time, where
K is the number of ordered pairs of polyhedral parts in
contact in the assembly (thus K is at most n(n�1) for
an assembly with n parts), and N is the total number
of the contact constraints among the parts.

5 Experimental Results

The algorithm described above has been implemented
and in this section we present selected experimental
results. (We have conducted more experiments and
these will be reported in a forthcoming full version
of the paper.) The linear programming problems are
solved using the MINOS package [11]. The contact
constraints are computed by the algorithm described
in [5].

The �rst example, given by Snoeyink and Stol�
[14], consists of six identical tetrahedra in contact and
shown in Figure 2. They proved that no proper sub-
set is separable by in�nitesimal translation. We revisit
this example, con�rm their result with our program,
and show that if we allow general in�nitesimal motion
(i.e., including rotation), then this construction can be
partitioned. In this example, K = 24 and N = 96.

P2

x
y

z

Figure 2: Six tetrahedra in contact [14]

In the case of translation only, where d = 2, 22
representative points are found by the algorithm, and
all of the corresponding DBGs are con�rmed to be
strongly connected. In the case of rigid motions, where
d = 5, 190 representative points are found, and only
118 of the corresponding DBGs are strongly connected.
That is, some proper subset is separable in 92 direc-
tions of in�nitesimal motion with rotation. Examples
of the DBGs for d = 2 and d = 5 are shown in Fig-
ure 3. The DBG for d = 2 is strongly connected, and
that for d = 5 is not. In the latter case, Part P2 is
separable by the in�nitesimal motion shown in the �g-
ure, where the direction of the motion is represented
in the coordinates in Figure 2. This example requires
4:0 seconds CPU time to compute the constraints, 2:7
seconds to �nd the representative points, 27:0 seconds
to check the strong connectivity of the DBGs on con-
ventional workstations1 for d = 2, and 4:0, 1286:9 and
240:5 seconds respectively for the case d = 5.

The second example is an engine of a model-aircraft
whose parts are shown in Figure 4. Figure 5 shows the
engine assembled from the parts. In this example, the

1The constraints computation as well as checking for strong
connectivity of the DBGs are run on a SUN SPARC Station 1+

and the algorithm for �nding representative points in maximally
covered cells is run on a DEC 5000.

6



P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

(0   1   0)d=2 d=5 (0.   .99   0.   .0058   0.   0.)

Figure 3: Examples of the DBGs

number of the parts is 12, the total number of their
faces is 1; 066, K = 24, and N = 1; 112.

In the case of in�nitesimal translation, four repre-
sentative points are found, and none of the correspond-
ing DBGs is strongly connected. In the case of gen-
eral in�nitesimal motion, six representative points are
found, and here also none of the DBGs is strongly
connected. One of the DBGs, corresponding to an in-
�nitesimal rotation, is shown in Figure 6. The repre-
sentative point is represented by the coordinate system
depicted in Figure 5. This example requires 1881:7 sec-
onds to compute the constraints, 12:6 to �nd the repre-
sentative points, and 59:9 for checking strong connec-
tivity for d = 2, and 1881:7, 7880:1 and 120:25 seconds
respectively for d = 5.

6 Application to Object Recog-

nition

Another application of maximally covered cells arises
in model-based object recognition when using computer
vision. In a typical situation, one is given a 3D model
of an object and a 2D image containing the object.
Both the model and the image data are represented in
terms of geometric features, consisting of elements like
points, line segments, and curve normals. The goal
is to determine the pose of the 3D object in space
that best explains the features observed in the im-
age. In terms of geometric features, this is a matching
problem|but it is complicated by spurious image fea-
tures, missing model features, and general geometric
uncertainty in real data. An approach to this problem
that has been developed by Cass [2] proceeds as fol-
lows. De�ne amatch to be a pairing of a model feature
and an image feature, and a match set as an arbitrary
set of matches. A match de�nes a subset of pose space
(the set of all possible placements of the 3D object
with respect to the projection center) that causes the
object feature in question to match under projection
the image feature in question (within whatever error
tolerance we use). In general, a match naturally cor-
responds to some feasible region of the pose space. A

match set is geometrically consistent when there exists
a subset of the pose space that simultaneously realizes
all the matches in the set. If we think of the boundary
of a feasible match region as a constraint surface, then
the set of all possible matches de�nes an arrangement
in pose space whose cells clearly reect the consistent
match sets. It is clear that for our recognition task,
only the maximally covered cells are interesting: they
correspond to object poses that succeed in aligning
a (locally) maximal number of object and image fea-
tures. It is among those that we need to select the
best one.

7 Conclusions

We have presented a new, simple and e�cient ap-
proach to the partitioning problem of polyhedral as-
semblies under general in�nitesimal motions. The al-
gorithm improves considerably over the best previ-
ously known algorithms for this problem, and appears
to perform well in practice. The new solution seems
to be of independent interest and we have shown how
it can be used to solve a di�erent problem arising in
the context of object recognition.

Our algorithm was implemented and we have re-
ported experimental results. Currently, our main goal
is to further improve the running time of our pro-
gram so that it can handle larger and more di�cult
examples. We are also looking for more applications
where maximally covered cells in subdivisions induced
by convex polytopes may be of interest.

Acknowledgment

The authors thank Michael A. Saunders for letting us
use the MINOS package, and Rhea Tombropoulos for
her generous assistance with the linear programming
code. We thank Jack Snoeyink and Jorge Stol� for
valuable discussions concerning the contents of the pa-
per. Finally, we thank Jack Snoeyink for supplying us
with data of the constructions in [14].

References

[1] B. Aronov, M. Bern and D. Eppstein, Arrange-
ments of polytopes, manuscript, 1991.

[2] T.A. Cass, Robust geometric matching for 3D object
recognition, Proc. Intl. Conf. on Pattern Recognition
(ICPR), Jerusalem, 1994, pp. 477-482.

[3] R. Dawson, On removing a ball without disturbing
the others, Mathematics Magazine 57 no. 1 (1984),
pp. 27{30.

7



[4] L. Fejes Toth and A. Heppes, Uber stabile
K�orpersysteme, Compositio Mathematica 15 no. 2
(1963), pp. 119{126.

[5] H. Hirukawa, T. Matsui and K. Takase, Auto-
matic determination of possible velocity and appli-
cable force of frictionless objects in contact, IEEE
Trans. Robotics and Automation 10 no. 3 (1994),
pp. 309{322.

[6] L.S. Homem de Mello and S. Lee, edi-
tors, Computer-Aided Mechanical Assembly Plan-
ning, Kluwer Academic Publishers, Boston, 1991.

[7] L.S. Homem de Mello and A.C. Sanderson,
A correct and complete algorithm for the genera-
tion of mechanical assembly sequences, IEEE Trans.
Robotics and Automation 7 no. 2 (1991), pp. 228{240.

[8] N. Megiddo, Linear programming in linear time
when the dimension is �xed, J. ACM 31 (1984),
pp. 114-127.

[9] R.S. Mittikalli and P.K. Khosla, Motion con-
straints from contact geometry: Representation and
analysis, Proc. IEEE International Conference on
Robotics and Automation, Nice, 1992, pp. 2178{2185.

[10] K. Mulmuley, Computational Geometry: An In-
troduction Through Randomized Algorithms, Prentice
Hall, New York, 1993.

[11] B.A.Murtagh and M.A.Saunders, MINOS 5.4
USER'S GUIDE, Technical Report SOL 83-20R, De-
partment of Operations Research, Stanford Univer-
sity, 1993.

[12] B.K. Natarajan, On planning assemblies, Proc. 4th
ACM Symposium on Computational Geometry, 1988,
pp. 299{308.

[13] M.S. Ohwovoriole and B. Roth, An extension of
screw theory, Trans. ASME, J. Mechanical Design
103 (1981), pp.725-735.

[14] J. Snoeyink and J. Stolfi, Objects that cannot be
taken apart with two hands, Discrete and Computa-
tional Geometry, 12 (1994), pp. 367{384.

[15] R.H. Wilson, On Geometric Assembly Planning
Ph.D. Dissertation, Computer Science Department,
Stanford University, March 1992.

[16] R.H. Wilson and J.-C. Latombe, Geometric rea-
soning about mechanical assembly, Journal of Arti�-
cial Intelligence, 71 no. 2, 1994, pp. 371{396.

[17] R.H. Wilson and T. Matsui, Partitioning an as-
sembly for in�nitesimal motions in translation and
rotation, Proc. IEEE International Conference on In-
telligent Robots and Systems, 1992, pp. 1311{1318.

[18] J.D. Wolter, On the automatic generation of plans
for mechanical assembly, Ph.D. Thesis, The Univer-
sity of Michigan, Ann Arbor, 1988.

Cylinder-Head

Cylinder
Carburetor

Lining

Piston

Piston-Pin

Conrod

Crank

Bearing

Drive-Washer

Washer

Nut

Crank-Case

Figure 4: Parts of a model-aircraft engine

x

z

y

Figure 5: Assembled engine

(0   0   0   0   1   0)

Cylinder-head

CylinderLining

Piston

Piston-pin

Conrod Crank Bearing Drive-washer Washer Nut

Carburetor

Figure 6: Example of a DBG for d = 5

8


